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Direct C-H bond functionalizations on transition metals are a
promising approach for transformations of simple molecules into
valuable organic compounds.1 These functionalizations consist of
combination of C-H bond activation and subsequent coupling
reaction, but use of a NO molecule as a coupling partner is rare,
and the regulated N-C bond-formation to form nitroso-alkane and
-alkene has been a subject of considerable interest over these
decades.2 Their strategies involve NO insertion reactions2a–e and
reactions of M-NO with ketones under strong base,2f–h alkenes,2i,j

and alkynes.2k Interesting reports are the nitrosation of aromatic
compounds with electron-donating substituents by use of
[RuX(bpy)2(NO)](PF6)2 (X ) Cl, NO2; bpy ) 2, 2′-bipyridyl).3 In
this work, we describe unprecedented N-C coupling of the NO
ligand attended by concurrent vinylic C-H activation to form
nitrosovinyl derivatives. We have investigated the chemistry of
nitrosylrutheniums supported by Tp () hydrotris(pyrazolyl)borate)
ligand4 and recently found interesting N-N coupling of NO ligands
on dinuclear Tp ruthenium complexes.4b Furthermore, we show
here that the resulting nitroso-alkene complexes are chemically
versatile and potentially valuable species. These transformations
are of significance since exploitation of their reactivities has not
been sufficiently developed.5

Treatments of TpRuCl2(NO) (1) with 2-vinylpyridines in the
presence of excess Et3N in refluxing CH2Cl2 gave the nitrosovinyl
complexes TpRuCl{N(dO)-CHdCH-(NC5H3R)-κ2} (R ) H
(2a), Et (2b), Me (2c)) (Scheme 1). The IR spectra of 2 exhibit
disappearance of a characteristic ν(NtO) band. The MS spectra
show the parent molecular ion signals, and furthermore the structure
was confirmed by an X-ray crystallographic analysis of 2c (Figure
S1, Supporting Information). The structure of 2c verified the
presence of a nitrosovinylpyridine chelate in which two nitrogen
atoms of nitroso and pyridyl groups are coordinated to the central
ruthenium atom.

The observed N-C bonding indicates occurrence of the vinylic
C-H bond activation. Concerning vinylic C-H activation, there
are literature-described five-membered cycloruthenation reactions
of 2-vinylpyridine6 and vinyl N-heterocyclic carbene (NHC),7 where
initial coordination of pyridine or NHC group has been proposed.
Thus, we presume that the formation mechanism of 2 begins with
coordination of the pyridine nitrogen and dissociation of the chloride
ion. Intramolecular activation of a vinyl C-H bond, accompanying
formal HCl elimination with the aid of the base Et3N, should give
a cyclometalated intermediate, followed by insertion of the NO
ligand into the resulting Ru-alkenyl bond to afford the six-membered
ruthenacycle 2.8,9

The scarcity of the isolated nitrosovinyl complexes prompted
us to investigate the chemical reactivities of 2. Treatments of 2a
and 2b with HBF4 ·Et2O in refluxing MeOH for 2 h afforded the
ketoimine isomers TpRuCl{NHdCH-C(O)-(NC5H3R)-κ2} (R )

H (3a), Et (3b)) and the alcohol-incorporated complexes
[TpRu{NHdC(OMe)-C(OMe)2-(NC5H3R)-κ3}]BF4 (R ) H (4a),
Et (4b)) (Scheme 2).

Complex 3 was characterized by spectral data and elemental
analysis. In the EI-MS spectra, the parent molecular ion signals of
3 indicate the mass value remains unaltered during their formation.
The structure of 3b was confirmed by an X-ray diffraction study
(Figure S2, Supporting Information). In the nitrosovinylpyridine-
derived bidentate ligands, the nitroso group is transformed into the
imine group on ruthenium and simultaneously the keto group
appears. On the other hand, isolation of 4 indicates incorporation
of solvent molecules (MeOH). The 1H NMR spectra of 4 exhibit
a characteristic broad NH proton and three inequivalent methoxy
signals. Finally, the structure was revealed by an X-ray crystal-
lographic analysis of 4a (Figure S2), in accord with its FAB-MS
spectral data. In the iminotri(methoxy)ethyl substituent on the
pyridine, two MeO groups are linked to 1′-C carbon and the
remaining MeO group constitutes the iminoester form. Conversion
from 3a to 4a was not observed when a MeOH solution of 3a was
refluxed under acidic condition.

Isolation of 3 and 4 indicates significant complexity in these
reaction mechanisms. To obtain a clue to the mechanism, proto-
nation of 2a in the presence of PPh3 as an alternative nucleophile
wascarriedout.FromthereactionwithPPh3, the{(phosphonio)cyano-
methanidyl}pyridinecomplexTpRuCl{η2-NtC-C(dPPh3)-(NC5H4)-
κ} (5a) and the {nitroso(phosphonio)ethenyl}pyridine complex

Scheme 1

Scheme 2
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[TpRuCl{N(dO)-CHdC(PPh3)-(NC5H4)-κ2}]BF4 (6a) were iso-
lated in 27% and 8.2% yields, respectively (Scheme 2).10 Complex
5a and 6a were characterized by spectral data and elemental
analyses, and moreover their structures were determined by X-ray
diffraction studies (Figure S3 and S4, Supporting Information). The
remarkable feature is the presence of the π-coordinated CtN group
and phosphorus ylide moiety in 5a. In the 13C {1H} NMR spectrum
of 5a, the characteristic phosphorus ylide carbon atom resonated
at δ ) 42.1 as a doublet (JPC ) 125 Hz). On the other hand, for
6a, although insufficient quality of the crystals obtained and the
crystallographic disorder between two coordination sites of the
N(dO)-C moiety and Cl atom cause the uncertainty of the metric
parameters, the linkage of PPh3 with the 1′-C carbon in the
nitrosoethenylpyridine was established.

Concerning the reaction mechanism to 3 and 4, initial protonation
on the NdO oxygen atom would be considered.5e Protonation of
2 in CH2Cl2 (nonalcoholic solvent) afforded an uncharacterized red
solid, but presumable as the protonated species. Actually, treatment
of the separated red solid with PPh3 gave 5a and 6a. For the
formation of 3 in MeOH, protonation of the NdO oxygen formed
aldoxime and also induced nucleophilic addition of adventitious
H2O molecule on the 1′-C carbon atom (Scheme 3a), followed by
dehydration of the aldoxime to give a nitrile intermediate11 such
as 5a, which is converted to the ketenimine form12 and finally to
the ketoimine species 3. On the other hand, for the formation of 4,
the oxidative process would be essential, and one probable
elementary process is hydroxylamine oxidation.13 With this oxida-
tive process in mind, a reasonable mechanism is described in
Scheme 3b. In analogy with the formation mechanism of 3, addition
of the MeOH nucleophile on the 1′-C carbon atom would also occur.
In competition with dehydration process of the aldoxime to the
nitrile intermediate, hydroxylamine intermediate would be generated
by 1,3-H shift, followed by some oxidative process to give the
nitroso(methoxy)ethenylpyridine species such as 6a, although the
oxidizing species is presently unclear. Once again proton-induced
MeOH addition on the 1′-C carbon atom, dehydration similar to
that above-described, and subsequent further MeOH addition to the
nitrile moiety14 would afford 4.

In conclusion, we have obtained the chemically versatile ni-
trosovinyl complexes 2 from one-pot reactions of 1 with 2-vinylpy-
ridines, through vinylic C-H activation and N-C bond formation
of the NO ligands. Furthermore, we found novel transformation of
the nitrosovinyl complexes 2 by protonation in refluxing alcohol
to afford unusual alcohol-incorporated products 4 concomitant with

the ketoimine isomers 3, and their formation mechanisms are
revealed from the comparative investigation of an alternative proton-
induced PPh3 addition reaction.
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